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Objective of the study: To test if genetics discovered in 
GWAS of educational attainment predict total brain volume 
and, if so, to test if this association might mediate a portion 
of the association between education-linked genetics and 
cognitive functioning. 

Data analysis methods:  
Genome-wide association studies of educational attainment have identified genetics that 
predict years of completed schooling and related phenotypes in datasets from different 
continents and historical epochs 1–7. These genetics also predict cognitive functioning, including 
in children who have not yet entered school 6. These findings suggest that education-linked 
genetics influence educational attainment partly through their influence on cognitive function. 
But how education-linked genetics contribute to cognitive functioning is not known.  
Bioinformatics analysis of GWAS results suggest that education-linked genetics are implicated in 
brain development 2. One brain development phenotype linked with cognitive function is brain 
volume. People with larger brains tend to score higher on tests of intelligence 8–11. And 
biometric (family-based) genetic analyses find that the genetics of brain volume and the 
genetics of intelligence share substantial overlap 12–14. Collectively, these findings suggest the 
hypothesis that one pathway connecting education-linked genetics and intelligence is increased 
brain volume.   

Samples. To test this hypothesis, we will analyze four datasets with measurements of 
education-linked genetics, total brain volume, and intelligence. Two of these datasets come 
from population-based studies, UK Biobank (UKB, N=5,701) and the Dunedin Longitudinal Study 
(Dunedin, N=422). Two of these datasets come from primarily college-student samples, the 
Genome Superstruct Project (GSP, N=1,183) and the Duke Neurogenetics Study (DNS, N=515).  

Analysis samples will include only participants of European descent because this is the 
population in which education GWAS were conducted. (GWAS measure only a subset of 
common variation in the human genome. The method depends on patterns of correlation 
among spatially proximate genotypes, called linkage disequilibrium, to infer genotypes of 
unmeasured causal genetic variation from the subset of variation that is measured. Patterns of 
linkage disequilibrium vary between populations with different ancestry, e.g. Africans and 
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Europeans. As a result, the SNPs measured in GWAS may reflect different unmeasured 
genotypes in different populations. Thus, GWAS findings for education made in European 
samples may not provide valid information in other populations 15.)  

Genetics. We will measure education-linked genetics using the polygenic score method 16. 
Polygenic scores are summaries of genome-wide genetic influence on a phenotype derived 
from results of GWAS. To calculate a person’s polygenic score, each single-nucleotide 
polymorphism (SNP) is assigned a weight based on the effect-size estimated in the GWAS. Then, 
the weighted count of phenotype-associated alleles is averaged across the person’s genome to 
calculate their polygenic score. We will calculate polygenic scores based on the most recent 
GWAS of education 2, available from the Social Science Genetic Association Consortium 
(https://www.thessgac.org/data). Following the methods used in our previous analyses, we will 
compute polygenic scores using all SNPs, i.e. we will not apply any p-value threshold for 
inclusion of a SNP in the score and we will not restrict the set of SNPs to be in linkage 
equilibrium 5,6,17,18. Both simulation and empirical evidence find this approach produces 
maximally predictive scores 16,19–21.   

To correct for ancestry differences within the European-descent UKB, Dunedin, GSP, and DNS 
samples, we will adjust polygenic score analyses for the first 10 principal components estimated 
from the individual genome-wide SNP datasets 17,22,23.  

Total-brain-volume will be measured from high-resolution, T1-weighted MRI images. In the UK 
Biobank TBV (total gray matter plus total white matter) was estimated using SIENAX24.  In DNS, 
GSP and Dunedin, images were processed using the Freesurfer recon-all image processing 
pipeline25. Specifically, the BrainSegNotVent value was used for each subject which represents 
the volume of all gray matter and white matter structures in the cortex and cerebellum, 
excluding the ventricles and brain stem.  

 
Cognitive Function will be measured using a different test in each sample. In the UK biobank 
cognitive function was measured using 13 reason and logic puzzles 26. In Dunedin, cognitive 
function was measured using the Wechsler Adult Intelligence Scales (WAIS) 27. In GSP, cognitive 
function was measured using the Shipley Institute of Living Scale 28. In DNS, cognitive function 
was measured using the Wechsler Abbreviated Scale of Intelligence (WASI) 29.  
 
ANALYSIS 

There are four analyses: 

1) Test if total brain volume predicts intelligence 
2) Test if education-linked genetics predict intelligence 
3) Test if education-linked genetics predict total-brain-volume 
4) Test if total-brain-volume mediates the association between education-linked genetics 

and intelligence.  

In addition to these four analyses, we will conduct a sensitivity analysis to explore potential 
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heterogeneity between the population-based samples and the college-student samples. We will 
repeat our analysis in the subset of UK Biobank participants who had completed a college 
degree (N=2,808). This analysis will test if characteristics or experiences related to attending 
college might affect the relationships under study.  

All models will include covariate adjustment for sex. Samples with participants of mixed 
chronological age will include covariate adjustment for age. As described above, all polygenic 
score analyses will be adjusted for the first ten principal components estimated from the 
genome-wide SNP dataset of the study being analyzed.  

Results will be reported for individual samples. We will also meta-analyze results from all 
samples.  

Variables needed: 
Educational-attainment polygenic score 
10 principal components estimated from genome-wide SNP data 
Total Brain Volume 
Cognitive Function 
Age 
Sex 
 
Dunedin, DNS, and UK Biobank analyses will be performed at Duke by the Moffitt-Caspi and 
Hariri Labs. GSP analyses will be performed by the Holmes Lab.   
 

Significance of the Study (for theory, research methods or 
clinical practice):  
Genome-wide association studies of educational attainment have identified genetics that 
predict years of completed schooling and related phenotypes in datasets from different 
continents and historical epochs 1–7. These genetics also predict cognitive functioning, including 
in children who have not yet entered school 6. These findings suggest that education-linked 
genetics influence educational attainment partly through their influence on cognitive function. 
But how education-linked genetics contribute to cognitive functioning is not known.  
Bioinformatics analysis of GWAS results suggest that education-linked genetics are implicated in 
brain development 2. One brain development phenotype linked with cognitive function is brain 
volume. People with larger brains tend to score higher on tests of intelligence 8–11. And 
biometric (family-based) genetic analyses find that the genetics of brain volume and the 
genetics of intelligence share substantial overlap 12–14. Collectively, these findings suggest the 
hypothesis that one pathway connecting education-linked genetics and intelligence is increased 
brain volume. If brain volume does mediate the association between education-linked genetics 
and cognitive functioning, this finding will advance understanding of mechanisms of genetic 
influence on educational attainment. If not, it will suggest need for more refined neural 
phenotypes for neurogenetic analysis.  
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